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evolution is governed by a single autonomous nonlinear differential equation.
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SIGNIFICANCE AND EXPLANATION

This paper develops optimal policies for harvesting biological

populations. The age structure of the population is taken into account. The

policies qenerally involve harvesting at maximal effort, not harvesting, and

harvesting to keep the growth rate of the population a maximum.
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ON OPTIMAL HARVESTING WITH AN APPLICATION TO
AGE-STRUCTURED POPULATIONS

Morton E. Gurtin and Lea F. Murphy

I. Introduction.

In this paper we develop optimal-harvesting policies for a population whose evolution

is governed by a single autonomous nonlinear differential equation. We present a

formulation of the infinite-horizon problem which does not involve a discount rate
2 
and,

using straightforward arguments, are able to establish the following results:

(a) If the effort is unconstrained, the optimal policy is to reach a certain value

P. of total population as quickly as possible, and then to hold the population at that

value for all subsequent time. As one would expect, P. is the population size that

maximizes the growth rate and hence corresponds to the maximum sustainable yield.

(b) This policy is also optimal when the effort is constrained to be less than a

constant E, as long as E is sufficiently large. For E small, however, it may not be

possible to hold the population P(t) constant at P.. In this case, the optimal policy

involves a "bang-bang" effort function and the total population approaches a limit larger

than P.

We prove these results directly, withoult the aid of classical control theory. Indeed,

the classical theory is not well suited to this problem, since we deal, in part, with

unbounded controls, and since our formulation of the infinite horizon problem is

nonstandard.

Department of Mathematics, Carnegie-Mellon University, Pittsburqh, PA 11213.

Department of Mathematics, Oregon State University, Corvallis,, OR 97331.

This problem has been given considerable attention in the literature (cf., e.g., Clark and
Munro [1i, Clark 121, Spence and Starrett [31). Our results (b) for P0  and E small
appear to he new.
2
We use the overtaking criterion of optimality.
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We use our results to discuss optimal policies for age-structured populations

harvested with effort independent of age. Using a simplified form, due to Coleman and

Simues (41, of a general nonlinear model introduced by Gurtin and MacCamy [5], we are able

to show that for a population whose age distribution is initially persistent - an

assumption justified for a population which has been evolving over a long period of time -

the optimal-harvestinq problem reduces to the problem discussed above.

2. Age-independent theory.

a. The optimal-harvesting problem.

We consider a species whose total population P(t), when not harvested, is governed

by a differential equation of the form

=y(P)

We assume that the growth rate y

is a C
1  

function on (0,-)

with a

strict global maximum

(1)
at PM > 0.

We assume further that, on (0,P
M

y is strictly-positive an6 has

a finite number of critical
I:re . The crowt h rate v.

points.

;4F ii- the term "persistent age distribution" for what in the literature is usually

rpferred to as a "stable age distribution." In a future paper (61 we will investigate the
cons uonces of arbitrary initial conditions.

This awIfnMption can he weakened to include "critical depensation." Indeed, we need only
i!ionp th3t, when P. < PM' y ' n (p,PM).

-2-



Suppose that at t - 0 the population has inl.tial-value

P(0) = P0 > 0 , (2)

and that subsequently individuals are harvested at a rate

E(t)P(t)

with E a nonnegative function representing the (harvesting) effort. Then

= y(P) - EP , (3)

and using this equation and (2) the yield

fT E(t)P(t)dt

on a time interval [0,T) can be written as a functional of P:

T(P) - P - P(T') + fT y(P(t))dt (4)

Let us agree to use the term path for a strictly-positive, piecewise continuous,

right-continuous, 1iecewise C
I 

function P on [0,-). Assume that we are given a

family A of paths. Then an optimal path relative to A is a path P* e A with the

followi-iq property: given any P e A, p p*,

YT(P ) > YT(P) (5)

for all sufficiently large T (that is, for all T larger than some T I = T,(P)). Note

that, since (5) is strict, there is at most one optimal path.

There are many nossible objective (profit) functions with which one can work.
2 

For

converience, we have chose to ontimize the total vield. Our analysis goes through, almost

without chanqe, when a cost term proportional to

I+

T.P., Pit) = P(t+). This as;umntion removes ambiguity at points of discontinuity.

A thoruiqh discussion of objective functions anproptiate to harvesting problems is given by
Clark 21.
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E(t)dt

is subtracted from (4).

Remark. !he infinte-horizon problem is usually formulated with the aid of a discount

factor e t (K > 0); one then maximizes the total yield

E(t)P(t)e
- t

dt

This formulation renders the yield in the immediate future more important than that of the

distant future. To the contrary, our procedure models situations in which one is willing

to accept a sub-optimal yield initially, in order to eventually produce the best yield

possible. The use of a discount factor may be sound from an economic point of view, but

our policy is certainly more appropriate to a long range conservation program. It is

interesting to note that discounting generally leads to a smaller size for the ultimate

population.

b. Optimal harvesting when the effort is allowed to be unbounded.

Our first step will be to define the class A of paths. To begin with, we require

that the effort be nonnegative; in view of (3), this is insured by the constraint:

(A1 ) for any t > 0 at which P is differentiable,

P(t) ( y(P(t))

Next, note that YT(P) is well defined for all paths P, even those that suffer jump

discontinuities. If individuals are harvested, rather than stocked, the population after

such a jump must be less than the population before. We therefore add the second

constraint:

(A2 ) P(0) 4 P0. and for any t > 0 at which P jumps,

P(t) 4 P(t-)

To interpret the differential equation (3) on paths with jump discontinuities, we

rewrite it in the form

-4-



V

(n P) =-y(P) - E
P

For this equation to make sense for functions with jumps, E must be interpreted as a

distribution. Indeed, if tk (k = 1,2,...,n) denote the times of discontinuity of P,

then

-: P0 P(tk)

E(t) E (t) + 6(t)Xn 6(t-tk)n P(tk )

0 PF(0 k 6 P(t
k k

with E 0 piecewise continuous and 6 the delta distribution. Note that, with E defined

in this manner, (A2) follows from the requirement E ) 0.

Since y has a strict maximum at PM' we would expect the optimal policy to involve

reaching PM as quickly as possible and then remaining there for all subsequent time. For

P0 > P this is easily accomplished by jumping immediately to PM' since such a jump is

consistent with the constraint (A2 ). For P0 
< 

P. a jump from P0 to PM is not

possiblel as we shall see, here the optimal way to reach PM is to refrain from

harvesting. With this in mind we introduce the following definition: the free-growth

curve starting at Z 0 e (
0'PM) at time t0 > 0 is the solution Z(t), t > to, of the

initial-value problem

= y(Z)

zt0 = z0

Note that, since y > 0 on (
0
,PM

1
, Z is strictly-increasinq and reaches PM in finite

time.

Theorem. 1 Relative to

A = (paths consistent with (A1 ) and (A 2)}

the optimal path is given by

Cf., e.g., Clark and Munro [(1, Clark [21, Chapter 2.

p-5-



_,or P 0 > P, and by

rz(t). r t < t M
P (t) =(7)

for P, < P. jjtEre Z is the free-qrowth curve starting at P 0  at time t =0, while

tM is the time at which Z reaches PM

* By (3), the effort E required

to hold P(t) constant at PMis

given by

Thus for the path (6),

fru ~rwthE(t) =y(P )/p + 6(t)tn p0

while for (7),

t0 < tM

E~t)
2. L-r-Imai policl s Y( M' pMtM4 t<

'o:r iro-~f -r h theorem begins with

As'er'1ion 1. Let P e k he optimal. Then:

(~) piti P for all t (I ;

(ii) 11(t) P,, f',r all .sufficiently larqP t.

"r-101. AR~mne that Mi is not true, so that P > P. on some set J c (0,-). Define

;ni' ru i nj<P Pff-)I. Then, since G < P, it follows from (1) that

Y' Y ( 1) 1 ( r' y(P ) y(P(t))ldt + P(T-) - G(T-) > 0
'P T fO,T1



whenever T > inf J, which contradicts our hypothesis that P be optimal. This proves (i).

Before beginning the proof of (ii) note that, by (1) there exists an L e ,PM  such

that

p < P2' p2 e [L,P M I -> y(P 1 ) < y(P 2 ) (8)

Our first step in establishing (ii) will be to show that

lim P(t) - PM (9)
t .

Assume, to the contrary, that (q) is not true. Then, by (i),

lim inf P(t) ( PM
t

and there exists a K e (L,PM ) and an increasing sequence (t } with t + and
n n

P(t n ) < K

for all n. Let Z denote the free-growth curve starting at K at t - 0, let K denote

the time at which Z reaches PM' and let

Z n(t) - Z(t-tn)

so that Zn is the free-growth curve starting at K at time tn .

Further assume, without loss in generality

P M "that tn+1 > tn + K for all n. (If

I{tn 
} 

does not have this property, some

K p /subsequence does.) Since

P(t ) z z (t
Sn n n

l++ Zn = y(Zn) p & y(P)

and since the jumps in P are downward,
igure 3. Boundinq [ by Z.

S3we may conclude from a well known comparison

theorem
1 

for differential inequalities that

Cf., e.q., Hartman [7], Thm. 4.1, p. 26.
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P ' Zn on (t n't n+KI (0

Thus, for P defined by (6) or (7) and tn sufficiently large,

tn ( [(P*Ct)) - y(P(t))Idt = !tn ( y(PQ y(P(tflldt

n n

t +K': (yn V(Z tfdt f((P)-Y(z(tf) Idt 1) > 0
n

where we have used (8); hence

F(T) fT !y(P*(t)) - y(P(t)fldt ~ ~as T

Thus, since P > 0,

Y T(P ) T (P) = F(T) + P(T) PM + +- as T +

which aqain contradicts the assumed optimality of P. Thus P satisfies ('f).

Next, by (R) and (i), there exists a time a for which

N ___________________________P(t) e (L,PMI for all t > a.

z ' Let Z be the free-qr~wth curve

startinq at P(a) at tim'e t =a,

let K denote Iie :ime at which Z

Ireaches PM' and let C~ 0 be

a t defined by

Figure 4. Construction of (t) 0 t. < a

G(t) = Z(t), a < <

Then

y () 'T y(r~t)) - V(P(t))3dt + PIT )-P (1

lor all T c. Further, the arg-ument leadincl to (10) here tells us that



P (Z on (a, KI

Suppose that (ii) is not satisfied. Then, by (R), (11), and the properties of G,

y(G(t)) >y(P(t)) for all t e ',a,-)

the inequality being strict on an open set. Thus, since P~t) *P Mas t * ,V'must

he strictly positive for T sufficiently large. Since this cannot be so, (ii) must he

valid.

Tn view of Assertion 1, it SUFfices to establish optimality within the class

AM= {P e A 1 P 4PM on 0,) P~t) = P

for all sufficiently large tj

Assume that P~ 0 P M Let P be given by (6) and choose P e Am P 91 Then

P(T) = P (T) = PMfor all sufficiently large T, and for al) such T,

Y (P 1-Y (P) = [ y(P I-y(P~t))Idt >
T T Q M

hence P is optimal.

To complete the proof we must establish the o-ptimality of (7) when

P P

with this in mind, we introduce the following notation. Let A, C[ (P P -t

depnote the free-growth curve starting at P, at t Ot0 let denote the timep at wl",'

C' reaches (, And let [n(,-) with



c > + K(12)

Further, let H be defined on Ia,c) by

H (t Z(t-a), a -.t < a +K

C. a + c e. t (c

A, ~ tt)

Opt imal transitions. if y(C) < V(A)i. We call H the

optimal transition 1 from A to c

during Ea,cl ; ic is

litransition time oif Ii, c - a - Kthe rest time of H. Finally, a path P e A Miv a

r i e i j i q 5,i i ( a ) < ( t ) < P ( c ) f o r a l l t e ( a , c ) .( 1 4 )

AssePrtion 2. Lot- P 0 h e a rise durinq la,cl 1 [,-). Theon-

i) Thore is an ,ptimial transition H between Pta) and P(c) during la,c].

(ii) It tie- rost- time of Ii vanishes, then P =H on [a,cl.

iii) If 1; . mno,tone oin P(a),P(c)1 , then

v(H(t)) ;, y(P(t)) for all t e [a,c(

wth n tric-t ineoality on an open set if the rest time of H is nonzero.

I' will i',o tho proof on) v For

Y(P(e)) > V(P(a))

P(t) < (t-a), a < t a+c (1

- 10-



(cf. (10)). Thus c is consistent with (12) and the optimal transition (13) is well

defined. Assume (for the remainder of this paragraph) that the transition time K of H

equals c - a. Then H(t) = Z(t-a) for all t e fa,cJ, and since

H(c) - ,(c)

- y(H), P ( y(P)

it follows
1  

that P ; H on fa,c]; this inequality and (15) yield P = H on [a,c].

To prove (iii) let y be monotone and hence strictly increasing on EP(a),P(c)].

(The monotonicity is strict since y has at most a finite number of critical points in

(0,PM).) It is clear from (15) and (14) that P 4 H on [a,c), and if the rest time of

H is nonzero, that P(a+K) < H(a+K) = P(c). This yields the validity of (iii).

We are now in a position to establish the optimality within AM and hence A - of

the path P defined by (7). Thus choose P e Am, P 0 P*, and let TM be the least time

for which

P(t) = PM for all t ) TM (16)

Since all jumps in P are downward, P must take on all values in [P0 ,PM1 . Let

ClI,2,....C n  with P0 = C 1 < C 2 <...< Cn 
=

M

Cn =M -- ___________________________

t
1 2 2 1n qn

Fl-.ar-! 6. Decomposition of P.

'f., .i. , Hartman f7l, Romark 1, p. 26.
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denote the extreme points of y in [P0,PM1, let 2k (k = 1,2,...,n) denote the last

time in [0,TM] at which P takes on the value Ck (note that 2 = TM ), let Tk

(k = 2,3,...,n) denote the first time after t k- at which P has the value Ck, and

define Ti = 0. Then

P is a rise during [I k ITk+1 (k = 1,2,...,n-i) (17)

Consider the path R e Am obtained from P by replacing each rise (17) by the

corresponding optimal transition. Then, since y is monotone on each [P( k), P( k+1)],

we may conclude from Assertion 2 that

y(R(t)) ) y(P(t)) for all t ) 0

(Note that P and R coincide on each [Tk ,k 1.) Thus

Y T(R) > Y T(P) for all T ) TM (18)

We shall complete the proof by showing that

Y T (P > Y (P) for all T > T (19)

For convenience, we consider separately the two cases: R P*, R P*.

Case i (R = P ). Here

Tk = Ek (k = 1,2,...,n) and the rest time -

(20)

for each rise except the last - vanishes

Thus, by (ii) of Assertion 2, R and P coincide outside of the last rise-interval

[n 1,Tn 1. The rest time associated with this last rise cannot vanish, because if it did,

then R and P would coincide everywhere, an impossibility, since R = P f P.

Consequently, we may conclude from (iii) of Assertion 2 and (8) that

y T(P) < YT () Y (p )) for all T ) TM

Case 2 (R i P ). Let T > TM = Z • By (7), the integraln

IT y(P*(t))dt

-12-



is equal to (T-TM)Y(PM) plu the integral of y(P ) over the free-growth segment of

P * Since the free-growth equation is autonomous, this latter integral equals the integral

of y(R) over the free-qrowth portions of R. Thus

yT(P - YT(R) - (T-TM )y(PM) - T(R) , (21)

where IT(R) is the integral of y(R) over the set Q consisting of the rest portions of

the optimal transitions that comprise R and the union of the intervals (T,1 'Z,

(2, 2 ),...(TnT). On 0, y(R) < y(PM
) 

and (as we shall show at the end of the proof)

9 contains an open set 0 with

y(R(t)) < V(PM 
) 

for all t e 0 (22)

Thus, since the measure of Q is T - TM,

I T(R) < (T-TM)Y(PM ) ,

and (21) yields YT(P > YT(R). In view of (18), this inequality implies (19).

To verify (22) note first that (20) cannot be satisfied, for if it were, then R

would equal P*. Thus at least one interval [T kI or at least one rest interval with

R 9 PM has nonzero duration. This interval clearly contains an open set 0 on which (22)

is satisfied. (If the interval in question is [n ,X£ 1, the existence of C is insurednn

by the equality of R and P on [ntn I and the fact that T. = Zn  is the smallest

time consistent with (16)).

Remark 1. The construction R - obtained from P by replacinq each rise (between

extrema of y) by its corresponding optimal transition - can he defined (in an obvious

manner) for any function P with domain an interval a,hl, as b'no as P(a) < P(b) and

P(t) % P(b) for all t P (a,b). We will refer to this construction as the juasi-ptimizer

of P on )a,b'.

c. Rounded effort.

The problem becomes more co..plex when the effort is restricted by at, upper bound F.

We require that E(t) . F for all t, or oquivalently,

(A ( P(t) > y(P(t)) - EP(t)

A path which obeys (Al) an (A 3 ) is necessarily ,ontinuous. We thoreforo limi- in!)

restrict our attention to paths consistent with (A), (A.), and the initial conliticn (2).

-13-



In addition to assuming that y is a C
1  

function on [O,w) with a finite number of

critical points, we assume

lim sup y(P) 4 0 (23)
p +

Then there is a largest value P S(< -) for which

y(P) = EPs

Further, by (23), y restricted to (P s,) has a maximum; we assume that this maximum

occurs at exactly one point P e fPs,-):
M S

y(P M) > y(p) for all p > P S 
p 

0 M (24)

Finally, we assume that y > 0 on (0,Ps). We use the notation

S = y(PS), M = y(PM) ; (25)

then M > S.

In addition to free growth curves, the optimal path involves maximal-effort curves;

that is, solutions X(t), 0 4 t < , of the equation

X y(X) - EX . (26)

We again anpeal to a comparison theorem
2 

to note that if P satisfies (A3) and P(t0 ) -

X(t 0), then

P 4 X on [0,t 01, P ) X on [t0,o) (27)

For Pn < PM' we will use the following notation:

U1 = inf(p > P 0 1 Y(P) > M)

and for each value of n(n 1,2,...) for which the underlying set is nonempty,

V = inf(p > U n y(p) < M)n n

Un+I = inf(p > Vn I Y(P) > M}

T),e n < Vn < "n+I'

1,-Ia ',y he wpakonel as indicated in Footnote 2, p. 2.

"., .. , Hartman [71, Thin. 4.1 and Remark 1, p. 26.
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y ) M on (U,V n ) , (28)

and, by (24), V ( PS' for all n. Since y has a finite number of extrema, it is clear

that there is a finite number N (say) of Un'S and the same number of V'S.

We consider two cases.

- Case A. PM is not a local

I y(p) maximum of y. Then, by (24),

PM = 
PS, y < S on (Ps,) , (29)

p and VN PS"
P0 U1 V1 UN Ps = 

N

Figure 7. The function y for Case A.

Theorem A. Relative to

A = (paths consistent with (AI), (A3), and (2))

the optimal path is P , as described below.

(a) If P0 < PS' then

r Z 1 (t), 0 K t < u

X (t), u1  t < v1

p (t) = . (30)

zN(t), VN. I 4 t < UN

XN(t), uN 4 t <

with

Z, the free-growth curve through P0 at t = 0,

Zn the free-growth curve through Vni at t Vn_1,

un  the time at which Zn(un) = Un,

X the maximal-effort curve through U at t =

n n t un

v the time at which Xn(vn) = Vn .

~-19-



(b) If PO > PS' then P* is the maximal-effort curve through Po at t - 0.

ip We justify the vn by noting that,

1 1 for n < N, y(p) - Ep > 0 on [UnVn I

Y(P) so that Xn  reaches Vn in a finite

time. The optimal paths are graphed in

IFigure 9. Before proving the theorem for

UI VI U N VN PS M Case A, we state the results for

Figure 8. The function y for Case B.

Case B. P M is a local maximum for y (Figure 8).

Theorem B. Relative to

A (paths consistent with (AI), (A3 ), and (2))

the optimal path is P , as described below

(a) If PO < PM'

z (t), 0 t < u

X 1 (t), uI  t < v

P (t)t,
Z N+I (t), v N 4 t < t M

PM, t M 4 t <

Here Zn, Xn, un  and vn are interpreted as in Theorem A, ZN+1 is the free-growth curve

through v. At t = v, ,  nd tM  is the time at which ZN+1(tM) =pm

(b) If PS PM 
>  

PS'

X(t), 0 4 t < t M

SM' t M 4 t < ,

where X is the maximal-effort curve through P0  at t = n, and tM is the time at

whi-h X(tM) = PM" (Since X(-) - PS 
< 

PM' tM 
<

(c) If PO 
• 
PM and P.S = P., then P is the maximal-effort curve through PO

at t 0.

-16-



pP

Case A p Case B
0

P0 N maximal effort

-- free growth PM . .. .. ....

P S

VN=P S  V --------
UN N -

N N

U 1 -. . - - - -. . U 1  . . . . . . ..

P0 P0

t t

Figure 9. Optimal paths.

We will prove the theorem only for Case A(a). Since the technical aspects of the

proof arR rather complicated, we offer, as a preliminary, the following intuitive argument

in support of the optimality of the path (30).

We first ask, is there an optimal equilibrium value for the population? By (A3 ), any

equilibrium value p must satisfy v(p) E. It is clear from Figure 8 that the "best"

such value is p = PS. We therefore expect, and will indeed show, that the optimal path

asymptotically approaches PS.

We next ask, what is the best way to make the population grow from its current size to

the optimal size PS? We know that the optimal asymptotic yield rate is S. Thus if the

current yield rate is less than S, we refrain from harvesting co hasten the growth of the

population to a size which will produce a higher yield. On the other hand, when the

current yield rate is higher than 9, we are in an unusually profitable sittuation.

Although the population will inevitably grow beyond this profitable stage, we can, hv

harvesting with maximal effort, prolong the period of high profit. The path P As

Iefined in (30) behaves in the manner just described.

-17-



Remark 2. If y has a strict global maximum at PM > PSI which will be the case if

E is sufficiently large, then it is possible to harvest so that P is held constant at

P. For this case Theorem B is completely analogous to our theorem for unbounded effort.

For P0 < PM the optimal path is a free-growth curve followed by P(t) E PM for P. 
> 

PM

the optimal path is a maximal-effort curve (which replaces the jump to PM ) followed by

P(t) - PM

We now beqin our proof of Theorem A(a). Thus let

P0 < PS

Assertion 3. Let P e A be optimal. Then:

(i) lim P(t) 
= 

P
t.

(ii) P is nondecreasing.

Proof. Note that P(t) ( PS1 0 < t < -, since otherwise, the path Q e A defined by

Q(t) = min{P(t),P S}

would be better. (For convenience, we use the terminology: Q is better than P if

YT( Y YT (P) for all sufficiently large T.) Assume first that P(t ) e [Un ,Vl at ;ome

time to. Let X be the maximal-effort curve through P(t0 ) at t0 . By (26), X(t) - PS

as t * ; thus, since X < P 4 PS on It 0,-), (i) is satisfied. Assume next that

P(t) < "J, for all t. Let

S eL {p e (o,U N I y(p) s - el (31)

Then there exists an e > 0 such that

y(p) > Ep for all p e S L (32)e

Moreover, since y has at most a finite number of critical points, Se is the union of a

finite number of comnact Intervals. By (26), (27), and (32), if P enters any such

interval, it remains only a finite time, and it never returns. Thus P(t) lies outside

S. for all qufficiently large t, and (25)1 and (31) yield

y(Ps) - y(P(t)) > e (33)

for all such t. Tet

-18-



Z(t), 0 4 t 4 t

Q(t) - PS I ts S t < ,

where Z is the free-growth curve starting at P0  at t - 0, while t is the time at

which Z reaches PS. Then a trivial computation, based on (23), shows that

lim (Y (Q) - YT(P)] +
T- T

so that Q is better than P. This contradicts the optimality ot , and the proof of (i)

is complete.

(ii) We will show that P(t
+ ) 

)- 0 for all t. Assume, to the contrary, that

P(t+) < 0 at some time t1 , and let P = P(tl). Then by (A3), y(P1) < and,

since y(Ps) = EPS P1 < PS. In addition,

q - sup~p e [0,p I ) I y(p) = Ep ,

T - inf{p e ( ,psj I y(p) ip}

exist (recall y(O) ) C), and

y(p) < Ep for all p e (q,T)

(34)
0 o ( < P < T < PS

(Cf. Fiqure 10. The inequality T < P S is a consequence of (28) and (301).

Let X be the maximal-effort curve starting at P1  at t = t I. Since the maximal-

effort curve through q remains constant at q, X > q on [t II); hence (27) yields the

conclusin

P > q on It1, ) (35)

Let t, + X be the first time after tI at which P(t1 +) = P1 " (Since Pi 
< 

PS,

the existence of Z > 0 is assured by (i).) Then

P < P, on (tl,t +£) (36)

y (34) 2, (35), and (36), q < P(t) < t on (tl ,+£), so that, by (34)1,

y(P(t)) < EP(t) < ET = V(T) for all t P (t ,tl+z)

Thus the path 0 P A, pictured in Figure 11 and defined by

V)_q-



Q(t), 0 4 t < t

P(t+x), t1 4 t < t - £

Q(t) =

T, t2 2t < t 2

P(t), t 2 4 t < - ,

where t2 (> t1 +£) is the first time after ti at which P(t 2) T, is better than P.
+

Hence P(t+) < 0 is not possible. This completes the proof of Assertion 3.

/
Ep

P1

p

q I
I I Iii

p i .

q P T tl+R t2

Figure 10 Figure 11

The following definition will be useful. Let f be a continuous, nondecreasinq

function on [0,-), and let F belonq to the range of f. Then f stretched at

F by amount 2 > 0 is the function

defined by

f f Af(t), 0 C t < t o

F " t(t) = F, t < t o + zF

f(t-£), to + 2 ( t <

t0 to+

Figure 12. f stretched at F.
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where to  is the first time at which flt 0) = F. A typical stretched function is shown in

Figure 12. Of course, by successive applications of this definition we may stretch a

function at a finite number of points in its range.

We are now in a position to establish the optimality of the path P defined by

(30). In view of Assertion 3, it suffices to show that P is better than any path

P 8 A, P P, consistent with (i) and (ii) of Assertion 3. Let P be such a path, let

n (n = 1,2,...,N) denote the time at which P crosses Un , and let n(n = 1,2. N-i)n

denote the time at which P crosses Vn (These times are unique; indeed, if t denotes

any one of these times, then P(t) ) y(P(t)) - EP(t) > 0.) Let P be P stretched at

VI.V2....,VN- 1 with An - (Vn-Un ) the aiont of the stretch at Vn . Here An  is the time

it takes the maximal-effort curve starting at Un  to reach Vn . Finally, let u

(n - 1,2,...,N) be the time at which P crosses Un, so that n = u + An'n n n

(n 1,2. N-i) is the last time P takes on the value Vn . Then, since P P

P P ( 37)

in addition, a simple analysis shows that

lim y T(P) - Y T(P)] 0
T-

It therefore suffices to show that

P is better than P (39)

Consider the path R obtained from P as follows:

(I) On [un,v n ] replace P by the maximal-effort curve startinq at Un  at t Un.

(Note that P is defined so that this maximal-effort curve reaches V,, at V .)~n
(IT) On vn1I ' nn replace P by its quasi-optimizer (cf. Remark 1). Here (1) and

(II) hold for n = 1,2,...,N with v0 = 0 '! '. = N .) The paths P and R are shownN

in Figure 13. Note that these oaths generplly do not belong to A.
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N- - - J i | H i -im m M w ,. .. ... .

Sp

" ' . ..-- -- -  -- ,

/

trotch -

;* -ma imal-effort curve

4j-- casi-optimizer __i

ivi U 2  "2 U N

Figure 13. The curves P and R.

Assertion 4.

lim inf Y T(R) - Y T(P)l ) 0
T o

T

with strict inenuality if R i P.

Pro-ff. Let ' > uN  and define

N
N N

T U 'v vU, J u ' J J n [0,T]
n1 ! n n=l n n

(3
Q
)

T(A) = [y(R(t)) - y(P(t))Idt
A

6n that IOT I U JT and

YT?) - Y (P1 = P(T) - R(T) + I(I) + I(T
T

5"(u), (7) 0  irnies P >T) ) R(T). Thus to prove Assertion 4 it suffices
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to show that (40) and (41) below are valid:

I(I) ) 0 with strict inequality if R 0 P on I (40)

lim inf 
7
(JT ) ) 0 with strict inequality if R 0 P on J (41)

T

Conclusion (40) is an immediate consequence of (ji) and (iii) of Assertion 2 and the

fact that R # P on I only if at least one of the optimal transitions associated with

R has a nonzero rest time.

We now prove (41). On an interval [unvn , R is a maximal effort curve. Because

+ -+ +Sy( - EP > 0 whenever Un 4 P < Vn' P must be strictly increasing on unvn]

until the time at which P reaches Vn.  Of course, if n = N, P may never reach VN , in

which case P is strictly increasing on Cu N,). Let Ck, Un = C1 < C2  CK - Vn,

denote the extrema of y on [Un,VnI, so that K is odd, and

for k even, y is strictly increasing on ECk-lCk]

(42)

strictly decreasing on [C k,C k+I

Let tk be the time at which R(tk) Ck . Further, let Q be the function obtained by

Ck=Vn stretching P at each Ck for odd

R k < K, and then restricting the result

S/ _ -to [uvn . The amounts of the stretches

-n n

i are uniquely determined by the requirement

C ,=U , Q(tk) = R(tk)(= Ck) for k even. It

tI t2 t tk t is clear from this construction and (27)

Figure 14. The function Q. that, for k even,

C 1 Q R - Ck on Et k_,tk , Ck  R 4 Q ,C+1 on ftk,t Ik+

Thpqe inpoialift q and (42) im-.v that

y(R(t)) > v(Q(t)) on [u ,v (43)



The integral of Y(*) over the times at which P is strictly increasing is equal to the

analogous integral for y(Q). Thus, since y(Ck) Y(C K),

1 n !y(Q(t)) - y(((t))Idt > 0
Un

and we conclude from (43) that

f n [y(R(t)) - y(P(t)]dt ) 0 , (44)

n

for n < N. Thus to show that lim inf I(JT) ) 0 we have only to show that

lim inf (T [y(Q(t)) - y(;(t)5]dt ) 0 (45)

T + - u
n

To verify (45) let 2k (k odd) be the length of the stretch in Q at Ck  and let L

denote the sum of the 2k . Then the integral in (45) is equal to

IT+
T-L [S - y(P(t))Idt + I R,[jy(C k ) - S1

odd k

The integral tends to zero as T + -, since P(t) + P as t + , while the sum is

> 0, since y(Ck ) ) S. Thus (45) holds.

The remainAer of the proof of (41), that lim inf I(JT
) 
> 0 when R P + on J, can

safely be omitted. This completes our proof of Assertion 4.

We now return to the proof of (38) and consider separately two cases.
* 

4

Case I (R = P ). Here, by (37), R # P, and (38) follows from Assertion 4 with

Case 2 (R 1 P ). Choose T > uN (> uN) and consider the integral

To 
=  

0 (y(P*(t)) - v(R(t)))dt
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The inteqral of y(R) over the free-qrowth portions of R is equal to the analoqous

Inteqral for P . Similarly, the inteqral of V(R) over the maximal-effort seqments of

R on (O,u N equals its counternart for P on [ ,UN1. Thus 10 = 12 - 11 - 13, where

, h y(R(t))dt, 1 2 , y(P (t)ldt

uN uN

and 13 is the inteqral of y(R) over those subintervals of I (cf. (39) on which P

is constant. The measure of these sub-intervals is

T = N - U N

Thus, since y(R(t)) .. S on I, we have the bound

73

with

(1) A = 0 when y(R(t)) = S on all of the above subintervals,

(2) A > 0 when y(R(tl. < S on at least one such subinterval.

Finally, since R(t+) = P (t) for t > u N ,

- = T Y(P (t))dt

2 1 T-T

In view of the above remarks,

Y (P C - Y (R) ; P (T-) - P (T) + ( ty(P t)) - S~dt + A
T TT-T

and, since P t) S

lim inf Y T(P ) - YT(R)1 P A > 0 (46)
T T



For 6 > 0 this result and Assertion 4 imply (38). Thus assume A = 0. Since R 0 P

there is at least one interval Q in I with R constant at S, so y(R) - ER =

S -ER > 0 on Q. Since P - P e A on I and R fails to satisfy (A3) on 8 c I,

; R on Q. Thus (38) follows from (46) and Assertion 4. This completes the proof.

d. Discounting.

The usual method of treating an infinite horizon problem is to introduce a discount

factor e into the yield. The total yield

JO e- E(t)P(t)dt

is then defined for all bounded paths P and may be written as

Y(P) = f e- w(P(t))dt + P

where

w(P) = y(P) - KP (47)

The correspondinq optimal harvestinq problem for unconstrained effort consists in

maximizing Y over the class of all bounded paths which are consistent with (Al) and

(A2). If w is a C
I 

function on (0,-) with a strict global maximum at PM > 0 and if

w has no other extrema on (0,-) (48)

then the soltion of this prohlem is analogous to the solution of the nondiscounted problem

of section b. (cf., e.g., Clark and Munro [1] and Clark (2], chapter 2.) We now show, by

example, that if the rather restrictive assumption (48) is eliminated, the optimal path

n-i not he a most rapid approach to PM"
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2

P0 Poe PM
e -  

PM

Figure 15. The function w.

Let P0 > 0, K > 0, and M > 0 be fixed. Further, let e > 0 be arbitrarily small,

let PM= PM(e) = P0/e' and let w = we be a C1 function on [0,-) with the following

properties: w has a strict global maximum at PM' w > 0 on [P0,PM],

w(PM) = M, w(P 0) M - e (49)

and

(2
I M - e on (PPo

e e2

w (50)
2 -e

e on [P0ee , Pme

we will show that for e sufficiently small the path P E P is better than the path P

defined in (7).

To see this let Z = Ze he the free-growth curve startinq from P0  at t = 0, so

that, by (47),

= w(7) + cZ (51)

Let tM = tM(e) be the time at which Z reaches P. (cf. (7)). Further, let t 0  tO(e)

and t I = t1 (e) denote the times at which Z reaches Po
e  

and PMe , respectively,

so that to < ti < tM . Assume that e < K. Then (51) yields

P7 7 M + -, nn fn,t M (52)
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since M and K are independent of e, while Pe
-  

becomes infinite as e - 0, we

may conclude from the second inequality in (52) that

t, + . as eo + *(3

et0  Pe2'

Similarly, the first inequality in (52) yields Z(t0 ) ) Poe , and, since Z(t0 ) - Poee

it ")flows that t0  e; thus

to + 0 as e - 0 (54)

In view of (50), w(Z(t)) is bounded above Ly M - e for 0 < t < to, by e for

t t < t1 , and by M for t1 < t < t ; thus, using (7) and (49)2,

-K0 " 1tt< I 0'tt e- c t- .(.e e -t+ (M-ee c
Y(P* Y(P) < (2e-M)e-dt + ft ee- dt = K

By (53) and (54) the right side of the above relation has the limit -M/K as e * 0.

A
Hence we have only to choose e sufficiently small to insure Y(P) > Y(P ).

3. The age-dependent theory without harvesting.

a. Basic equations. Persistent age distributions.

We work within the framework of the nonlinear theory developed in (5]. This theory is

basel on the equations

D + ; + i(a,P(t))p(a,t) = 0aa a

P(t) = p(a,t)da , (55)

B(t) = P(0,t) = B(aP(t))p(at)da

where

(a,t) is the age distribution (the number of individuals, per unit aqe,

of age a > 0 at time t ) 0);

P(t) is the total population;

B(t) is the birth-rate;
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j is the death function (U(a,P)da is the probability of dying in

the age interval (a,a+da) when the population is P);

8 is the birth function (S(a,P) is the expected number of births

to a person of age a, per unit time, when the population is P).

Here, however, we assume that dependence on total population is confined to the death

function. More specifically, we assume that
1

B(a,P) a(a)
(56)

j(a,P) l ln(a) + Ue(P)

In (56)2, Wn(a)da represents the probability of dying of natural causes during (a,a+da),

while P (P)da is the probability of death due to environmental factors (crowding, etc.)

during the same interval. In view of this interpretation,

s(a) = exp{- 0 Lln (a)d }

is the probability of living to age a in a perfect environment; that is, an environment

with

Vep= . (57)

Assumption (56)2 is special, as the effects of the environment are independent of age; it

might be appropriate, for example, to a population in the presence of predators which

indiscriminatly eat individuals of all ages.

We assume PnPe , and 6 are C
I 

functions on [0,-) with R e L (0,-) and

1(a)R(a)da > 1 (5s)

These assumptions with jk = 0 and (a) a sum of terms of the form hakeI
-
"a were

utilizedl by Gurtin and MacCamy (5,81 to reduce the system (51) to ordinary iifferential
equations. The more general form (56) was introduced hy Coleman and Simmes '41.
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The left side of (58) represents the net reproduction rAl-e
1 

in a perfect environment. A

consequence of (58) is that in such an environment the population ultimately grows. This

assumption therefore yields a population which is amenable to harvesting.

Because of (58), the equation

f0 ,(a)8(a)e -rada = I

has exactly one real solution r, and r > 0. We call r the natural growth rate. For a

perfect environment the function

p(a,t) = CiT(a)e-ra P(t) (59)

with

P(t) - P(O)ert

anA C chosen so that

C f0 i(a)e rada = 1 (60)

is a solution of (55) ((56) and (57)). we call such solutions persistent age

distributions. Their importance is that they represent the asymptotic behavior of general

solutions for large timet
2 

given any solution p there is a constant CO such that, for

each a,

-ra rt
p(a,t) - C0s(a)e e

as t

Cf., e.q., Keyfitz [91, p. 102.
2

1 1 or r 1 n.

3
-,,i(t) is t - signifies that f(t)/g(t) 1 1 as t

-30-
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b. General solution. 1

Consider now the initial-value problem consisting of the system (55) supplemented by

the initial condition

P(a,O) - (a) (61)

with initial data P continuous and of compact support. To solve this problem we write

E(a,t) = p(a,t)eixp{ f0 Us(P())d)} (62)

Then, because of (56), equations (5) , and (61) are equivalent to

a (a,t) + a(a,t) + u (a)~a,t) =0

&(0,t) - f$ (a)&(a,t)da ,(63)

(a,O) - P(a)

The equations (63) constitute a linear system for ~,a system which is, in fact, the

classical formulation of the problem for a perfect environment. The corresponding birth-

rate

B(t) - (0,t)

is therefore a solution of the Sharpe-Lotka equation

B(t) - ft S(a)ir(a)B(t-s)da + 0(t) ,(64)

where depends only on the initial data:

r(axa) = it(s)

Coleman and Simmes (41.



Once 8 is known the total population

P(t) " (a,t)da (65)

corresponding to is easily calculated using the relations

P(t) = ft (a)8(t-a)da + T(t)

(66)

'I(t) = ft i(a-t,a)p(a-t)da

It is important to emphasize that , 8, and P are the age distribution, birth-rate, and

total population that would prevail in a perfect environment.

To derive (64) and (66) from (63) we integrate (63), along characteristics (t = a +

constant). The result,

rf(a)B(t-a), 0 • a < t
E(a,t) , (67)

7(a-t,a)P(a-t) t c a

when combined with (63)2 and (65), yields (64) and (66).

Next, we integrate (62) with respect to age and use (55) 2 and (65) to conclude that

P(t) = P(t)expfft )e(P(X))dX) (68)

If we differentiate this relation with respect to t and divide the result by P(t), we

find that P satisfies the ordinary differential equation

er = - We(P)]p 
(69)

Here

P(t)

represents the instantaneous growth rate in a perfect environment. Of course, P

satisfies the initial condition

-12-



P(0) P f0 (a)da (71)

The above analysis yields the following procedure for solving the initial-value

problem (55), (56), and (61):

(a) Solve the linear integral equation (64) for 8(t).

(b) Compute P(t) from (66) and f(t) from (70).

(c) Solve the differential equation (69) - with initial condition (71) - for P(t).

(d) Compute C(a,t) from (67) and p(a,t) from (62).

4. Harvesting of age-structured populations.

a. Basic equations. The optimal harvesting problem.

We consider harvesting with effort E(t) independent of age. Thus individuals of

age a are harvested at a rate E(t)p(a,t), per unit age and time, and, in place of

(55), , we have the balance equation

p(at) + p(a,t) + fp(a,P~t)) + E(t)]p(a,t) = 0 (72)
as at

The underlying equations are therefore (72) and (55)2, 3 supplemented by the initial

condition (61). (We continue to assume that p and A satisfy (56).)

We will use the procedure discussed in Section 3 to reformulate the problem. We

therefore define

F(a,t) = p(a,t)exp{f[ [ e(P(X)) + E(A)ld } (73)

Then satisfies the linear system (63), 6,t) = F(0,t) is again the solution of the

linear integral equation (64), and P(t), defined by (65), is again given by (66). It is

1

Cf. Remark 3.

j



important to note that , B, and P represent the age distribution, birth-rate, and

total population that would prevail in the absence of harvesting and environmental effects.

As before, the behavior of the actual population P(t) is governed by an ordinary

differential equation. Indeed, the exact same steps used to derive (69) now lead to

P y(t,P) - EP (74)

with

y(tP) ( [7(t) - 'Je(P)]p (75)

In view of (74), the yield

fT f- E(t)p(at)dadt . E(t)P(t)dt (76)

on a time interval [0,T) is given by the functional

Y T(P) = P0 - P(T) + 0 y(t,P(t))dt (77)

Roughly speaking, our optimal harvesting problem consists in maximizing (77) subjct to

certain constraints. This problem can he attacked using the following procedure:

(a) Solve the linear integral equation (64) for B (t).

(b) Compute P(t) from (66) and y(t) from (70).

(c) Solve the optimal control problem defined by the differential equation (74)

and the functional (76).

'Infortmnately, because of the dependence of y(t,P) on t, the optimization problem

of (c) Aoe- not fit within the framework discussed in Section 1. There is, however, an

important class of problems for which this dependence disappears. This class corresponds

to initially persistent age distributions, and we shall study it in the next section.

h. timal harvesttiq for initially persistent age distributions.

As nof-d at the end of Section 3a, when the environment is perfect and harvesting

th, 'i e 14 tribution is ultimately persistent. Therefore, if the population has

he.'! -vrovino over a lona period of time, and if all past harvestinq has been with effort
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II

independent of age, then it seems reasonable to assume1 that initially p will have the

age structure indicated in (59). We therefore assume that the population is initially

persistent in the sense that

S(a) - CP0 (a)e-ra

where C and P0  are constants with C chosen so that (60) holds, while r is the

natural growth rate. The initial-value problem (63) then has the unique solution

V(a,t) -C r(a)e - r a Pt ) ,

(78)

P(t) - P0e rt

so that, by (70),

y(t) - r (79)

Further, the counterpart of (68) in the present circumstances is simply (68) with E(M)

added to pe (P(i)); thus (78)1 and (73) imply that

p(a,t) - C(a)e -rap(t) (80)

In view of (75) and (79), y(t,P) is independent of t:

y(P) - [r - je(P)]P (81)

Thus the differential equation (74) reduces to

= y(P) - EP , (82)

while the functional (77) takes the form

YT(P) = P0 - P(T) + f0 y(P(t))dt (83)

Comparing (82) and (83) with (3) and (4), we see that for an initially persistent

population the optimal harvesting problem reduces to the (age-independent) problem

discussed in Section 2. Therefore, if y satisfies the hypotheses of Section 2, the

theorems of Sections 2b and 2c hold.

1
Cf. (73).
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Remark 3. Our results extend trivially to situations in which individuals of age a

have an economic value g(a), where g is a nonnegative, L function on [0,-). In

this case the yield (76) is replaced by

fT f- g(a)E(t)o(a,t)dadt -= E(t)G(t)dt ,(84)

where

G(t) - f. g(a)p(a,t)da

and (80) implies that

G(t) = (C fo' g(a)1(a) -rada)P(t) = C 1P(t)

with C I > 0 constant. Thus (84) is a constant times the yield (76), and the corresponding

optimization problem reduces to that already discussed. When the age distribution is not

initially persistent this reduction does not take place; the resulting problem is treated

in [il].
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